Sequoia: A New OpenPGP Implementation in
Rust

An Experience Report

Neal H. Walfield and Justus Winter

Rust Fest, Nov. 24, 2018

https://sequoia-pgp.org/talks/2018-11-rust—-fest

https://sequoia-pgp.org/talks/2018-11-rust-fest

Sequoia

> A new OpenPGP implementation in Rust
» First commit: October 16, 2017

» Motivation

» GnuPG is hard to modify
> Code and API grew organically over 21 years
> Lack of unit tests
> Tight component coupling

» Many developers unsatisfied with GnuPG's API

» Rust is memory safe

» GnuPG can't be used on iOS due to GPL

Who We Are

P=P

> Neal, Justus, Kai
» Former GnuPG developers (2-2.5 years at glOcode)
» At p=p since Fall 2017
> Funding
> p=p (primary)
» Wau Holland Stiftung (secondary)
> (We're actively looking to diversify funding base!)

OpenPGP

» Encryption and Data Authentication & Integrity Standard

>

RFC 4880

> Not just for email. ..

>

vV VY vV VY VY

v

v

Package Signing

Commit Signing

Document Signing (integrated in LibreOffice)
Backups, Archives

Encrypted Storage in the Cloud

Encrypted Sneaker Net

Password Manager

Remote Authentication (e.g., ssh agent)

Packet-Based Format

> An OpenPGP message is composed of packets:
> Literal Data Packet
» Signature + One Pass Signature Packet
» Compression Container
» Symmetrically Encrypted Data Packet (SEIP)
> Public-Key Encrypted Session Key Packet (PKESK)

>...

An OpenPGP Message

» Some Data

Hello!

An OpenPGP Message

Hello!

Literal Data

» Some Data

» Encapsulate in an OpenPGP packet

An OpenPGP Message

OPS Hello! SIG

Literal Data

» Some Data
» Encapsulate in an OpenPGP packet
> Sign it

An OpenPGP Message

v

v

v

Encryption (SEIP)

PKESK | | OPS Hello!

SIG

=
Literal Data

Some Data

Encapsulate in an OpenPGP packet

Sign it
Encrypt it

An OpenPGP Message

v

v

v

v

Encryption (SEIP)

PKESK | | OPS Hello!

SIG

=
Literal Data

Some Data

Encapsulate in an OpenPGP packet

Sign it
Encrypt it

Looks like a pipe

Aside: OpenPGP Messages Also Used for Key Exchange

v

Public-Key Packet
Public-Subkey Packet
User ID Packet

v

v

Challenges
Processing a Pipeline
A Generic Reader Stack
A Better Parser Interface
Callbacks that Save State
Smuggling Failures in io: :Errors

Challenge: Processing a Pipeline

Decryptor

Tread()

Hashed Reader

Tread()

Literal

Tread()

Application

> Create a stack of readers!
> Readers can also be used to deal with framing

> Enforce packet boundaries
> Chunked encoding

Depth-First Traversal of an OpenPGP Message

» Visitor Pattern

» Uses the stack

Idea

impl<R: Reader> CompressedData<R> {
fn parse (mut reader: R) {

if let Some(algo) = reader.read_u8() {
let reader = match algo {
1 => CompressedData { inner: reader },

}i
parse (reader) ;

fn parse<R: Reader> (mut reader: R) {
if let Some (tag) = reader.read_u8() {
match tag {
8 => CompressedData: :parse (reader),

error: reached the recursion limit while instantiating

— parse::<CompressedData<CompressedData<CompressedDatac< |
—CompressedData<CompressedData<CompressedDatax |
—CompressedData<CompressedData<CompressedDatax |
—CompressedData<CompressedData<CompressedDatax |
—CompressedData<CompressedData<CompressedDatax |
—CompressedData<CompressedData<CompressedDatax |
—CompressedData<CompressedData<CompressedDatax |
—CompressedData<CompressedData<CompressedDatax |
—CompressedData<CompressedData<CompressedDatax |
—CompressedData<CompressedData<CompressedDatax |
—CompressedData<CompressedData<CompressedDatax |
—CompressedData<CompressedData<CompressedDatax |
—CompressedData<CompressedData<CompressedDatax |
—CompressedData<CompressedData<CompressedDatax |
—CompressedData<CompressedData<CompressedDatax |
—CompressedData<CompressedData<CompressedDatax |
—CompressedData<CompressedData<CompressedDatax |
—CompressedData<CompressedData<CompressedDatax |
—CompressedData<CompressedData<CompressedDatax |
—CompressedData<CompressedData<CompressedDatax |
—CompressedData<CompressedData<CompressedDatax |
—CompressedData<CompressedData<GenericReader«< |
‘—)Std::fS::File>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

Lessons

> Generics can result in a lot of invisible types
» There is no way to articulate a base case to the compiler

» Can limit recursion at run-time
» No way to express this to the compiler

» —> need dynamic dispatch

Challenge: A Generic Reader Stack

» Need an into_inner () for trait objects
> But trait objects are unsized!

> Can use a special version of self:
pub trait BufferedReader ({
fn into_inner<'a> (self: Box<Self>)
—-> Option<Box<BufferedReader + 'a> >
where Self: 'a;

}
Need an Option to handle the base case

v

into_inner and a Transparent Forwarder

» Working with boxed objects is ugly
» Often requires unnecessary boxing and unboxing

» Can use a transparent forwarder:

impl<'a> BufferedReader for Box<BufferedReader + 'a>
{
fn buffer (&self) -> &[u8] {
self.as_ref () .buffer ()
}

}

» Can now pass a Box<BufferedReader> wherever a
BufferedReader is needed

But, this creates a linked-list with into_inner ()

impl<R: BufferedReader> BufferedReaderLimitor<R> {
pub fn new(reader: R) —-> Self {

}
impl<R: BufferedReader> BufferedReader

for BufferedReaderLimitor<R>

fn into_inner<'a>(self: Box<Self>)
—-> Option<Box<BufferedReader + 'a>>
where Self: 'a {
Some (Box: :new(self.reader))

into_inner boxes the inner reader

The inner reader is of type R

If Ris a Box<BufferedReader>, we now have two boxes
Each new / into_inner adds another box!

The constructor needs to take a Box<BufferedReader> to
avoid this

vVvyVvyyvyy

Challenge: A Better Parser Interface

> Using the visitor pattern requires callbacks

» Would prefer an iterator-like API

> OpenPGP messages can be huge
» Requires streaming operations

An lterator Interface

let pp PacketParser::from_reader (r) .unwrap () ;
for packet in pp.iter () {
eprintln! ("{:?}", packet);

if let Packet::LiteralData(l) = packet {
// This doesn't work!
io::copy(émut 1, &mut io::stdout())
.expect ("Decryption failed");

> Doesn't allow streaming

» The returned item can't reference the original object
» But the reader has to stay embedded in the
PacketParser to get the next packet!

» Flattens tree structure

An lterator-like Interface

let mut ppr = PacketParser::from_reader (r).unwrap();
while let PacketParserResult::Some (mut pp) = ppr {
// Streaming operations...
match pp.packet {
Packet::Literal(_) =>
io::copy (&émut pp, output) ?,

let (packet, ppr_) = pp.recurse()?;
ppr = ppr_;

// We own the packet & can save it without copying.
match packet {

> Three phases
> Similar enough to Rust's Iterator APl to be familiar
» |f we don’t want to recurse into a container, can use next

Challenge: Callbacks that Save State

» Often want to collect some state, but how to propagate it?

» In C:
struct callback_state {

}

void callback (void *cookie) {
struct callback_state *state = cookie;

}

void g () {
struct callback_state state;
function (&state, callback);

}
» In Rust, don't use a cookie, use a trait!

Example

trait CallbackHelper {
fn callback (émut self);

fn function<CB: CallbackHelper> (cb: &mut CB) {
cb.callback ()

struct Callback { }
impl CallbackHelper for Callback {

fn callback (émut self) {
println! ("Hello, world!");

fn main() {
function (¢émut Callback { });

Challenge: Smuggling Failures in io: :Errors

» We use failures

» We also implement general purpose traits (e.g., io: :Read)

> Failures can be returned via an io: :Error using
failure: :compat!

Converting a Failure to an io: :Error

match result {

Ok (r) => Ok(r),

Err(e) => match e.downcast::<io::Error>() {
// An io::Error. Pass as-—is.
Ok (e) => Err(e),
// A failure. Create a compat object & wrap it.
Err(e) =>

Err(io::Error::new(io::ErrorKind: :0ther,
e.compat ())),

b

Recovering the Failure

let result = io::copy(&mut verifier, output)
.map_err(|le| if e.get_ref().is_some () {
// Wrapped failure::Error. Recover it.
failure::Error::from _boxed_compat (
e.into_inner () .unwrap())
} else {
// Plain io::Error.
e.into ()

1)z

» verifier is a custom reader

» Using this pattern, it is still able to use rich errors!

Interested in Sequoia?

» Sequoia’s low-level APl is 98% feature complete

> ...including a C FFI
» Port to p=p Engine nearly complete

> About 60% as much code as version using GPG

v

gpgv replacement
New keyserver implementation
» Experiments porting other software

v

> First release was. ..
» Join us!

> (We're looking to hire people to help
with Android and iOS integration.)

Interested in Sequoia?

> ...including a C FFI

» Sequoia’s low-level APl is 98% feature complete
» Port to p=p Engine nearly complete

> About 60% as much code as version using GPG
> gpgv replacement

> New keyserver implementation

» Experiments porting other software

> First release was. . . right now!
> Join us!

> (We're looking to hire people to help
with Android and iOS integration.) '

Andy Wright, CC BY 2.0
[m] = = =

Summary
https://sequoia-pgp.org

v

Sequoia is a new OpenPGP
implementation

v

User-centric development

v

Strong focus on security
Portable & highly integrated
Low-level API is already usable

v

v

v

Join us on. ..

> irc: #sequoia on Freenode

» mailing list: devel@sequoia-pgp.org

> gitlab:
gitlab.com/sequoia-pgp/

Sequoia by steve lyon, CC BY-SA 2.0

https://sequoia-pgp.org
gitlab.com/sequoia-pgp/

	Introduction
	Sequoia
	OpenPGP

	Challenges
	Processing a Pipeline
	A Generic Reader Stack
	A Better Parser Interface
	Callbacks that Save State
	Smuggling Failures in io::Errors

